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Abstract

We construct new explicit non-singular metrics that are complete on non-compact Riemannian
8-manifolds with holonomy Spin(7). One such metric, which we denote byA8, is complete and
non-singular onR8. The other complete metrics are defined on manifolds with the topology of
the bundle of chiral spinors overS4, and are denoted byB+

8 , B−
8 andB8. The metrics onB+

8 and
B

−
8 occur in families with a non-trivial parameter. The metric onB8 arises for a limiting value of

this parameter, and locally this metric is the same as the one forA8. The new Spin(7) metrics are
asymptotically locally conical (ALC): near infinity they approach a circle bundle with fibres of
constant length over a cone whose base is the squashed Einstein metric onCP

3. We construct the
covariantly constant spinor and calibrating 4-form. We also obtain anL2-normalisable harmonic
4-form for theA8 manifold, and two such 4-forms (of opposite dualities) for theB8 manifold.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Few explicit examples of complete non-compact manifolds admitting Ricci-flat metrics
with the exceptional holonomiesG2 in seven dimensions or Spin(7) in eight dimensions are
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known. Three asymptotically conical examples have been found inD = 7, for manifolds
with the topology of the bundle of self-dual 2-forms onS4 or CP

2, and the spin bundle of
S3 [1,5]. In D = 8 the only Spin(7) example that was known was defined on the chiral spin
bundle ofS4 [1,5].

In this paper, we give a construction of new eight-dimensional metrics of Spin(7) holon-
omy, and show that among these are examples that are complete on two different non-compact
manifolds. It represents the elaboration and simplification of the original construction in
[4]. The new metrics are all asymptotically locally conical (ALC), locally approaching
R×S1 ×CP

3. The radius of theS1 is asymptotically constant, so the metric approaches an
S1 bundle over a cone with baseCP

3. However, the Einstein metric on theCP
3 at the base

of the cone is not the Fubini–Study metric, but instead the “squashed” metric described as
anS2 bundle overS4. The new solutions can have very different short-distance behaviours,
with one approaching flatR8 whilst all the others approachR4 × S4 locally. The global
topology is that ofR8 in the first case and the bundle of positive (or negative) chirality
spinors overS4 for the others. An intriguing feature of two of the new metrics, one on each
of the inequivalent topologies, is that in local coordinates the metrics are identical. Globally,
the metric is complete on a manifold ofR

8 topology if the radial coordinater is taken to be
positive, whilst in the region with negativer it is instead complete on the manifoldS(S4)

of the bundle of chiral spinors overS4. We shall denote the new Spin(7) manifold with
R

8 topology byA8, and the new related manifold withS(S4) topology byB8. The more
general classes of new manifolds with the topology of the chiral spin bundle overS4 will
be denoted byB+

8 andB
−
8 .

Our construction is a generalisation of the one that leads to the previously known metric
of Spin(7) holonomy. That example is given, in local coordinates, by[1,5]:

ds2
8 =

[
1 −

( r0

r

)10/3
]−1

dr2 + 9

100
r2
[
1 −

( r0

r

)10/3
)
h2
i + 9

20
r2 dΩ2

4, (1)

where

hi ≡ σi − Ai, (2)

theσi are left-invariant 1-forms on SU(2), dΩ2
4 the metric on the unit 4-sphere, andAi the

potential of the BPST SU(2) Yang–Mills instanton onS4. Theσi can be written in terms of
Euler angles as

σ1 = cosψ dθ + sinψ sinθ dϕ, σ2 = − sinψ dθ + cosψ sinθ dϕ,

σ3 = dψ + cosθ dϕ. (3)

The principal orbits areS7, viewed as anS3 bundle overS4. The solution(1) is asymptotic
to a cone over the “squashed” Einstein 7-sphere, and it approachesR

4 × S4 locally at short
distance (i.e.r ≈ �). Globally the manifold has the same topologyS(S4), the bundle of
chiral spinors overS4, as the new Spin(7) manifoldsB8 andB

±
8 that we obtain in this paper.

2. Einstein equation and first integrals for Spin(7) metrics

The generalisation that we shall consider involves allowing theS3 fibres of the previous
construction themselves to be “squashed”. In particular, this encompasses the possibility
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of having an asymptotic structure of the “Taub-NUT type,” in which theU(1) fibres in a
description ofS3 as aU(1) bundle overS2 approach constant length while the radius of the
S2 grows linearly.

A convenient way to parameterise the metric is by first introducing the left-invariant
1-formsLAB for the group manifold SO(5). These satisfyLAB = −LBA, and

dLAB = LAC ∧ LCB. (4)

The 7-sphere is then given by the coset SO(5)/SU(2)L, where we take the obvious SO(4)
subgroup of SO(5), and write it (locally) as SU(2)L ×SU(2)R. If we take the indicesA and
B in LAB to range over the values 0≤ A ≤ 4, and split them asA = (a,4), with 0 ≤ a ≤ 3,
then the SO(4) subgroup is given byLAB. This is decomposed as SU(2)L × SU(2)R, with
the two sets of SU(2) 1-forms given by the self-dual and anti-self-dual combinations:

Ri = 1
2(L0i + 1

2εijkLjk), Li = 1
2(L0i − 1

2εijkLjk), (5)

where 1≤ i ≤ 3. Thus the seven 1-forms in theS7 coset will be

R1, R2, R3, Pa ≡ La4. (6)

It is straightforward to establish that

dP0 = (R1 + L1) ∧ P1 + (R2 + L2) ∧ P2 + (R3 + L3) ∧ P3,

dP1 = −(R1 + L1) ∧ P0 − (R2 − L2) ∧ P3 + (R3 − L3) ∧ P2,

dP2 = (R1 − L1) ∧ P3 − (R2 + L2) ∧ P0 − (R3 − L3) ∧ P1,

dP3 = −(R1 − L1) ∧ P2 + (R2 − L2) ∧ P1 − (R3 + L3) ∧ P0,

dR1 = −2R2 ∧ R3 − 1
2(P0 ∧ P1 + P2 ∧ P3),

dR2 = −2R3 ∧ R1 − 1
2(P0 ∧ P2 + P3 ∧ P1),

dR3 = −2R1 ∧ R2 − 1
2(P0 ∧ P3 + P1 ∧ P2). (7)

In terms of these left-invariant 1-forms, we can write the ansatz for the more general metrics
of Spin(7) holonomy on theR4 bundle overS4 as

ds2
8 = dt2 + 4a2(R2

1 + R2
2) + 4b2R2

3 + c2P2
a . (8)

We shall work with an orthonormal frame bundleeA defined by

e8 = dt, e1̂ = 2aR1, e2̂ = 2aR2, e3̂ = 2bR3, ea = cPa, (9)

where we take the indexa to range over 0≤ a ≤ 3.
The factors of 4 in the terms involvinga2 andb2 in (8) are included for consistency with

the conventions in[4]. In that paper, the metric was written as

dŝ2
8 = dt2 + a2(Dµi)2 + b2σ2 + c2 dΩ2

4, (10)

where

Dµi ≡ dµi + εijkA
jµk, σ ≡ dϕ +A, A ≡ cosθ dψ − µiAi (11)
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andµi are coordinates onR3 subject to the constraintµiµi = 1 that defines the unit 2-sphere.
In terms of the left-invariant 1-formsRi andPa of this paper, we have the correspondences:

(Dµi)2 = 4(R2
1 + R2

2), σ = 2R3, dΩ2
4 = P2

a , (12)

together with dAi + (1/2)εijkA
j ∧ Ak = Ji.

We can derive first-order differential equations for the three metric functionsa, b andc,
which will imply Spin(7) holonomy, by requiring the existence of a closed self-dual 4-form
that has the symmetries of the octonionic structure constants. It is straightforward to see that
an appropriate 4-form, invariant under the isometries of the metric and with the required
octonionic structure, is given by

�(4) = −e0 ∧ e1 ∧ e2 ∧ e3 − e8 ∧ e1̂ ∧ e2̂ ∧ e3̂ + 1
2εijke

î ∧ eĵ ∧ Ĵ k + e8 ∧ eî ∧ Ĵ i

(13)

with Ĵ i ≡ c2Ji = (1/2)Ji
abe

a ∧ eb,1 ≤ i ≤ 3, where

Ji ≡ P0 ∧ Pi + 1
2εijkPj ∧ Pk (14)

are the three self-dual quaternionic-Kähler 2-forms on the unitS4 metricP2
a .

From(7) we see that d�(4) = 0 implies the first-order equations:

ȧ = 1 − b

2a
− a2

c2
, ḃ = b2

2a2
− b2

c2
, ċ = a

c
+ b

2c
. (15)

These equations imply that the metric(8) has Spin(7) holonomy, and also, therefore, that it
is Ricci-flat.

It is sometimes convenient to express the equations fora, b andc as a Lagrangian system.
We find that the equations for Ricci-flatness of(8)can be derived by requiring thatL ≡ T−V

be stationary with respect to variations ofα, β andγ, where

T = 2α′2 + 12γ ′2 + 4α′β′ + 8β′γ ′ + 16α′γ ′,
V = 1

2b
2c4(4α6 + 2a4b2 − 24a4c2 − 4a2c4 + b2c4), (16)

together with the constraintT +V = 0. Here a prime denotes a derivative with respect to a
new radial variableρ, defined by dt = a2bc4 dρ, and we have also definedα = loga, β =
logb, γ = logc.

We find that the potentialV can be derived from a superpotential, which we denote
by W . Writing T = (1/2)gij(dαi/dρ)(dαj/dρ), whereαi = (α, β, γ), we haveV =
−(1/2)gij(∂W/∂αi)(∂W/∂αj), where

W = bc2(4a3 + 2a2b + 4ac2 − bc2). (17)

From this, we can obtain the first-order equations dαi/dη = gij∂W/∂αj. Expressed back in
terms of the original radial variablet introduced in(8), these equations are precisely those
given in(15).

To summarise, we have the following proposition.

Proposition 2.1. Metrics of the form (8) are Ricci-flat if and only if a, b and c satisfy the
Euler–Lagrange equations following from (16). The gradient flow defined by (15)provides
three first integrals which solve these second-order Euler–Lagrange equations.
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Before proceeding to find new solutions to these first-order equations, we can first verify
that the previous Spin(7) metric(1) is indeed a solution. Also, we may observe that one of
the seven-dimensional metrics ofG2 holonomy has principal orbits that areCP

3, viewed
as anS2 bundle overS4, and is given, in local coordinates, by[1,5]:

ds2
7 =

(
1 − �4

r4

)−1

dr2 + r2
(

1 − �4

r4

)
(R2

1 + R2
2) + 1

2
r2P2

a . (18)

This therefore gives a solution inD = 8 of the form d̂s2
8 = ds2

7+dϕ2, and it can be described
within the framework of our first-orderequation (15)by first rescalingb → λb, and then
sendingλ to zero, so thatb = constant is allowed as a solution.

One can also see the specialisations to the previous results described above at the level
of the first-order equations themselves. Settinga = b gives a consistent truncation of(15),
yielding ȧ = (1/2)a2c−2, ċ = (3/2)ac−1, which are indeed the first-order equations for
the original Spin(7) metrics. On the other hand, sendingb → 0 in (15) yields a consistent
truncation toȧ = 1 − a2c−2, ċ = ac−1, which are the first-order equations for the metrics
of G2 holonomy whose principal orbits areS2 bundles overS4. (The first-order equations
for these two cases can be found, for example, in[3].) Also, we may note that a special
solution arises if we setb = −a, which then impliesa = −b = ±c = (1/2)t. This is flat
space.

Another specialisation of the metric ansatz(8) that makes contact with previous results
is to seta = c, in which case theS2 bundle overS4 becomes precisely the usualCP

3

Einstein manifold, with its SU(4)-invariant metric. This is incompatible with the first-order
equations (15), but it is easily verified that it is consistent with the second-order Ein-
stein equations following from(16). Solutions to these second-order equations then in-
clude the eight-dimensional Taub-NUT and Taub-Bolt metrics. The incompatibility with
the first-order equations is understandable, since the Taub-NUT and Taub-Bolt 8-metrics do
not have special holonomy. Another previously seen solution of the second-order equations
with a = c is the Ricci-flat Kähler metric on the complex line-bundle overCP

3. Although
this can arise from a first-order system, it is an inequivalent one that is not related to a spe-
cialisation of(15). Its superpotential isW = 2a6 + 6a4b2 [2], with T, V andgij following
from settinga = c in (16). (Other examples of this kind of phenomenon were exhibited
recently in[3].)

3. General solution of the gradient flow

3.1. The general solution: local analysis

In order to obtain new solutions of the first-orderequations (15), we first introduce a
new radial coordinater, defined in terms oft by dr = b dt. After also definingf ≡ c2, we
find by taking further derivatives of the first-orderequations (15)thatf must satisfy the
third-order equation:

2f 2f ′′′ + 2f(f ′ − 3)f ′′ − (f ′ + 1)(f ′ − 1)(f ′ − 3) = 0 (19)
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which can be expressed in the “factorised” form:

fQ′ − (f ′ + 1)Q = 0, (20)

whereQ ≡ 2fW′ + (f ′ − 3)W andW ≡ f ′ − 1. The remaining metric functions are then
given by solving

a′ = f ′ − 2

2a
− (f ′ − 1)a

2f
, b = 2a

f ′ − 1
. (21)

Naively there now appear to be four constants of integration in total rather than the expected
three, but the extra one is eliminated by substituting the solutions back into(15). In fact for
a generic solution, whereQ itself is non-zero, the solution fora, and hence forb, can be
written entirely algebraically in terms off , with

a2 = (f ′ − 1)(f ′ − 3)f

Q
, b = 2a

f ′ − 1
. (22)

Thus for a solution whereQ �= 0 the three integration constants for the first-order system
(15) are simply the three integration constants for the third-orderequation (19), and no
further substitution back into(19) is necessary. As we shall see below,Q is non-vanishing
for all but one degenerate solution of(19). Note that two of the three constants of integration
are “trivial,” corresponding to a constant shift and rescaling of the radial coordinate.

The general solution toEq. (19)may be obtained as follows. First, introduce a new radial
variableρ, and a functionγ(ρ), defined by

f(r) = exp

[
−
∫ ρ ρ̃ dρ̃

γ(ρ̃)

]
,

df

dr
= ρ, (23)

implying also that

d2f

dr2
= − γ

f
,

d3f

dr3
= 1

f 2

(
ρ

γ
+ γ

dγ

dρ

)
. (24)

(We assume here, and in the rest of this subsection, that df/dr is not a constant, and soρ
is a good radial variable. The special cases where df/dr is a constant are included in the
discussion inSection 3.2.) Eq. (19)now reduces to

2γ
dγ

dρ
+ 6γ = (1 − ρ2)(3 − ρ). (25)

The further replacement ofγ by z, andρ by v, defined by

z ≡ (1 − ρ)2

2(1 − ρ − γ)
, v ≡ ρ − 1 (26)

turns(25) into

2z(1 − z2)
dv

dz
= v + 2z. (27)
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The solution to this equation can be written in terms of the hypergeometric function as

v = 2k
√
z

(1 − z2)1/4
− 2z2F1

[
1,

1

2
; 5

4
; 1 − z2

]
. (28)

Retracing the steps of the various redefinitions, we see that by usingz as the radial variable
the general solution (with df/dr not a constant) for the Ricci-flat metric can be written as

a2 = (v − 2)zf

(1 + z)v
, b = 2a

v
, c2 ≡ f

(
1 + z

1 − z

)1/2

exp

[∫ z dz̃

v(z̃)(1 − z̃2)

]
. (29)

The coordinater is given in terms ofz by

dr = f dz

v(z)(1 − z2)
(30)

and so we have the following proposition.

Proposition 3.1. The local Ricci-flat metrics arising from the gradient flow (15)are given
by

ds2
8=

vf dz2

4z(1 − z2)(1 − z)(v − 2)
+4(v − 2)zf

(1 + z)v
(R2

1+R2
2)+

16(v − 2)zf

(1 + z)v3
R2

3+fP2
a (31)

with v defined by (28) and f defined by (29).

Note also thatk in the solution(28)for v(z) is the non-trivial third constant of integration
of the original first-order system(15). In obtaining this general solution we have assumed
thatQ is non-zero, so thata can be obtained using(22). In fact if Q is zero it can easily
be seen that unless in addition df/dr is a constant (which we have excluded from the
analysis in this subsection), then after using(21)and substituting back into(15), the metric
functionsa, b andc would all vanish. Thus the only additional solutions to(15), other than
those described by(31), are those with df/dr = constant, and these are included in the
discussion inSection 3.2.

3.2. Special globally defined solutions

As we shall show latter, the general Ricci-flat metrics obtained inSection 3.1include
one-parameter families of examples that are complete on manifolds with the topology of the
bundle of chiral spinors overS4. The parameter in question is a non-trivial one, as opposed to
the two trivial parameters associated with a constant shift and scaling of the radial coordinate.
Before discussing these families of complete metrics, we shall first discuss some simple
solutions of the first-orderequations (15). It is easier to discuss these in terms of the original
radial variabler used in writing(19). After absorbing a trivial constant shift of the radial
variable we can write down three elementary solutions of(19), namely

f = −r, f = 3r, f = r + r2

2�2
, (32)

where� is a constant. The first two solutions here are of the type where df/dr is a constant,
which were excluded in the general analysisSection 3.1:
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• The solution withf = −r hasQ = 8 and so we can use(22), to find

a2 = −r, b = −a, c2 − r. (33)

It follows from (8) that the metric in this case is just the trivial flat metric onR
8, with

r ≤ 0. In terms of the description usingz andv introduced inSection 3.1, it corresponds
to a degenerate solution at the point(z, v) = (1,−2).

• The solution withf = 3r hasQ = 0, and so here we must solve forb using(21). After
making a coordinate transformationr → 3r2/20, this solution is

a2 = 3

10
r

[
1 −

( r0

r

)10/3
]
, b = a, c2 = 9

20
r2. (34)

This can be recognised as the previously known complete metric of Spin(7) holonomy
[1,5], as given in(1). (The trivial scaling constantr0 arose here in the integration of
the equation forb in (21).) Note that because this solution hasf ′ = constant, it is
not contained within the general analysis ofSection 3.1, except as a singular limit that
corresponds to the point(z, v) = (−1,+2).

• The third elementary solution in(32), f = r + r2/(2�2), gives rise to our first examples
of new complete metrics of Spin(7) holonomy. After a coordinate transformationr →
−�(r + �), the metric in local coordinates becomes

ds2
8 = (r + �)2 dr2

(r + 3�)(r − �)
+ 4�2(r + 3�)(r − �)

(r + �)2
R2

3 + (r + 3�)(r − �)(R2
1 + R2

2)

+ 1

2
(r2 − �2)P2

a . (35)

Assuming that the constant� is positive, it is evident thatr should lie in the ranger ≥ �.
We can analyse the behaviour nearr = � by defining a new radial coordinateρ, where
ρ2 = 4�(r − �). Nearρ = 0 the metric approaches

ds2
8 ≈ dρ2 + ρ2(R2

1 + R2
2 + R2

3 + 1
4P

2
a ). (36)

The quantityR2
1 + R2

2 + R2
3 + (1/4)dΩ2

4) is precisely the metric on the unit 7-sphere,
and so we see that nearr = � the metric ds2

8 smoothly approaches flatR
8. At larger the

functionb, which is the radius in theU(1) directionR3, approaches a constant, and so the
metric approaches anS1 bundle over a 7-metric. This 7-metric is of the form of a cone
overCP

3 (described as theS2 bundle overS4) in this asymptotic region. The manifold
of this new Spin(7) metric, which we are denoting byA8, is topologicallyR8. In terms of
the description inSection 3.1, this solution corresponds to a trajectory in the(z, v) plane
with z = 1, andv running fromv = −2 (at the origin) tov = −∞ (in the asymptotic
region). Thus we have the following proposition.

Proposition 3.2. The metric A8 given by (35) with r > � > 0 admits a smooth complete
non-singular extension to R

8.

We shall use the acronym AC to denote asymptotically conical manifolds. Thus asymp-
totically our new metrics behave like a circle bundle over an AC manifold in which the
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length of theU(1) fibres tends to a constant. The acronym ALF is already in use to describe
metrics which tend to aU(1) bundle over an asymptotically Euclidean or asymptotically
locally Euclidean metric with the length of the fibres tending to a constant. We shall there-
fore adopt the acronym ALC to denote manifolds where the base space of the circle bundle
is asymptotically conical.

Ricci-flat ALC metrics, although not with special holonomy, have already been encoun-
tered. For example, the higher-dimensional Taub-NUT metric is defined onR

2n for all n and
it is ALC with the base of the cone beingCP

n−1. A closely related example is the Taub-Bolt
metric which has the same asymptotics but is defined on a line-bundle overCP

n−1. How-
ever, the metric on the base of the cone in this case (withn = 4) is the Fubini–Study metric
on CP

3, which is quite different from that of the “squashed” Einstein metric onCP
3 in

our new metrics. A discussion of ALE Spin(7) manifolds based on the idea of blowing up
orbifolds has been given in[6]. As far as we are aware, no explicit examples of this kind
have yet been found.

We get a different complete manifold, which we are denoting byB8, if we taker to be
negative. It is easier to discuss this by instead setting� = −�̃, where�̃ andr are taken to be
positive. Thus instead of(35)we now have

ds2
8 = (r − �̃)2 dr2

(r − 3�̃)(r + �̃)
+ 4�̃2(r − 3�̃)(r + �̃)

(r − �̃)2
R2

3 + (r − 3�̃)(r + �̃)(R2
1 + R2

2)

+ 1

2
(r2 − �̃2)P2

a . (37)

This time, we haver ≥ 3�̃. Definingρ2 = 4�̃(r − 3�̃), we find that nearr = 3�̃ the metric
has the form:

ds2
8 ≈ dρ2 + ρ2(R2

1 + R2
2 + R2

3) + �̃2P2
a . (38)

The quantity(R2
1 + R2

2 + R2
3) is the metric on the unit 3-sphere, and so in this case we find

that the metric smoothly approachesR
4 × S4 locally, at small distance. The large-distance

behaviour is the same as for the previous case(35). In the(z, v) plane ofSection 3.1, this
solution corresponds to a trajectory withz = 1, andv running fromv = +2 (at the origin)
to v = +∞ (in the asymptotic region). Thus we have the following proposition.

Proposition 3.3. The metric B8 given by (37) with r > 3�̃ > 0 admits a smooth complete
non-singular extension to the chiral spin bundle over S4.

Again we have a complete non-compact ALC metric with Spin(7) holonomy with the
same base. At short distance, it has the same structure as the previously known metric of
Spin(7) holonomy, obtained in[5].

We can think of the new manifoldA8 as providing a smooth interpolation between
Euclidean 8-space at short distance, and anS1 bundle overM7 at large distance, whileB8
provides an interpolation between the previous Spin(7) manifold of[1,5] at short distance
and theS1 bundle overM7 at large distance. HereM7 denotes the 7-manifold ofG2
holonomy that is theR3 bundle overS4 [1,5].
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3.3. General globally defined solutions

Having discussed some special solutions of(15)in Section 3.2, and having seen that they
include new complete metrics of Spin(7) holonomy, we now turn to a discussion of the
global structure of the general solutions(31).

In order to recognise the solutions that give rise to complete non-singular metrics, it is
helpful first to study the phase-plane diagram for the first-orderequation (27), which can
be expressed as

dz

dτ
= 2z(1 − z2),

dv

dτ
= v + 2z, (39)

whereτ is an auxiliary “time” parameter. The solutions can be studied by looking at the flows
generated by the 2-vector field{dz/dτ,dv/dτ} = {2z(1 − z2), v + 2z} in the(z, v) plane.
For any such flow, it is then necessary to investigate the global structure of the associated
metric(31) for regularity.

We find that regular solutions can arise in the following four cases, namely

(1) A8 : z = 1(fixed); v = −2 to− ∞,

(2) B8 : z = 1(fixed); v = +2 to + ∞,

(3) B
−
8 : z0 ≤ z ≤ 1; v = +2 to + ∞, 0 < z0 < 1,

(4) B
+
8 : 1 ≤ z ≤ z0; v = +2 to + ∞, 1 < z0 < ∞ or z0 < −1;

(see discussion below). (40)

Note thatv = ±∞ corresponds to the asymptotic large-distance region, and in all four cases
the metrics have similar asymptotic structures, precisely as we have already seen in theA8
andB8 cases. The pointv = −2, z = 1 corresponds to the short-distance behaviour of the
A8 metric, approaching EuclideanR8 at the origin where theS7 principal orbits degenerate
to a point. Whenv = 2, on the other hand, we have the short-distance behaviour seen in the
B8 metric, approachingR4 × S4 locally. In fact solution (1) is the metric(35)onA8 found
in Section 3.2, and solution (2) is the metric(37) on B8 found there also. These both have
k = 0 in (28).

Solution (3) arises whenk is any positive number, withz0 being the corresponding value
of z at whichv(z0) = 2, with 0< z0 < 1. The value ofz0 is correlated with the value ofk,
ranging fromz0 = 0 for k = ∞, to z0 = 1 for k = 0.

Nearz = 1 it follows from(28) that we shall have

v = 23/4k(1 − z)−1/4 − 2 + · · · , f = c0(1 − z)−1/2 + · · · , (41)

wherec0 is an arbitrary constant of integration. Definingy ≡ (2c0)
−1/2(1− z)−1/4, we see

that asz → 1 we shall havey → ∞ and

ds2
8 ≈ dy2 + y2(R2

1 + R2
2) + 1

2
y2P2

a + 2
√

2c0

k2
R2

3 (42)

and so this more general metric has the same large-distance asymptotic form as doA8 and
B8. Nearz = z0 we shall havev(z) = 2 + v′(z0)(z − z0) + · · · , and defining a new radial
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coordinatex by (z − z0) = (1/4)x2 nearz = z0, we shall have

ds2
8≈ f0

2z0(1−z2
0)(1−z0)v′(z0)

[dx2+v′(z0)
2z2

0(1−z0)
2x2(R2

1+R2
2+R2

3)] +f0P
2
a ,

(43)

wheref0 is the value off at z = z0. From(27) we have thatz0(1 − z0)v
′(z0) = 1, and

so we see from(43) that at short distance the metric(43) approachesR4 × S4 locally.
Thus these more general solution (3) in(40) with k > 0 is complete on a manifold that
is very similar to the manifoldB8 of the solution(37), with anS4 bolt at z = z0. Here,
the trajectory in the(z, v) plane runs from(z0,2) to (1,∞). We shall denote the solution
by B

−
8 , where the superscript indicates thatz starts from a valuez0 < 1 at short distance,

flowing to z = 1 asymptotically. For the casek = 0, which leads to the metrics(35) and
(37), the quantityz is not a good choice for the radial coordinate, since it is fixed atz = 1.
This case can be regarded as a singular limit within the general formalism we are using
here. Specifically, if we letz = 1− 16ε4�̃4(r + �̃)−4, k = 21/4ε, and choose the integration
constant in(29) so thatf = (1/2)(r2 − �̃2), then upon sendingε to zero we recover the
metric(37).

Solution (4) arises in the case where at large distancez now approaches 1 from above,
and again the flow runs from anS4 bolt at whichv(z0) = 2, to the asymptotic region asz
approaches 1. There are two possibilities, withz0 either being greater than 1, or elsez0 is
less than−1. In the latter casez then runs fromz0 at the bolt, throughz = −∞ to +∞, and
then down toz = 1 in the asymptotic region. It is useful now to make another change of
radial coordinate, and definey ≡ 1/z. This allows the two regions forz0 to be combined.
The solution forv may now be written as

v = (1 − y2)−1/4(κ + y 2F1[ 1
2,

3
4; 3

2; y2]). (44)

The y coordinate then ranges fromy = y0 at the bolt toy = 1 at infinity, and−1 ≤
y0 ≤ 1. The integration constantκ is determined in terms ofy0 by the requirement
that v = 2 at y = y0. It can range betweenκ = 2

√
πΓ(5/4)/Γ(3/4), corresponding

to y0 = −1, andκ = −2
√
πΓ(5/4)/Γ(3/4), corresponding (by taking a suitable limit)

to y0 = +1.
A similar analysis to that for solution (3) above now shows that the metric in solution

(4) smoothly approachesR4 × S4 locally aty = y0, and that it has the same asymptotic
behaviour as the previous examples. We shall denote this solution byB

+
8 . Note that the

simple solutionB+
8 in (37)can be viewed as thek → 0 orκ → −2

√
πΓ(5/4)/Γ(3/4) limit

of the more complicatedB−
8 or B

+
8 solutions, respectively.

We observed at the end ofSection 2that a particular example of a solution of the first-order
equations (15)is the direct product metric ds2

8 = ds2
7 + dΦ2, where ds2

7 is the Ricci-flat
7-metric ofG2 holonomy on theR3 bundle overS4 [1,5], andϕ is a coordinate on a circle.
We are now in a position to see how this solution can arise as a limit of our new Spin(7)
metrics. Specifically, it arises as thek → ∞ limit of solution (3) listed in(40). This is
the limit where the constantz0, which sets the lower limit for the rangez0 ≤ z ≤ 1 for z,
becomes zero. At the same time as sendingk to infinity, we can rescale the fibre coordinate
ϕ appearing inR3 = (1/2)dϕ + · · · , according toϕ → kϕ.
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From(28) and (29)it follows that whenk becomes very large we shall have

V → 2k
√
z

(1 − z2)1/4
, f →

(
1 + z

1 − z

)1/2

(45)

and so in the limit of infinitek the metric(31)becomes

ds2
8 = dz2

4z(1 − z)2(1 − z2)1/2
+ 4z

(1 − z2)1/2
(R2

1 + R2
2) +

(
1 + z

1 − z

)1/2

P2
a + dϕ2.

(46)

Defining a new radial coordinater by r4 = (1 + z)(1 − z)−1, we see that this becomes
ds2

8 = ds2
7 + dϕ2, where

ds2
7 = 2 dr2

1 − r−4
+ 2r2(1 − r−4)(R2

1 + R2
2) + r2P2

a . (47)

This can be recognised as the metric ofG2 holonomy on the manifoldM7 of theR
3 bundle

overS4, which was constructed in[1,5]. (If we had not rescaled the fibre coordinateϕ by a
factor ofk before taking the limitk → ∞, the radius of theS1 would have tended to zero,
this limit being taken in the sense of Gromov–Hausdorff.) Thus the family of new Spin(7)
manifolds that we are denoting byB−

8 has a non-trivial parameterk such that thek = ∞
limit degenerates toM7 × S1, while thek = 0 limit reduces to the caseB8 given by(37).

4. Parallel spinor and calibrating 4-form

The fact that the metric(8), together with(15), has Spin(7) holonomy implies, and is
implied by, the existence of a globally defined parallel spinor fieldη, satisfyingDη = 0,
whereD ≡ d+(1/4)ω̂ABΓAB is the Loreutz-covariant exterior derivative that acts on spinors
in eight dimensions. HereΓAB ≡ (1/2)(ΓAΓB −ΓBΓA), andΓA are the Dirac matrices that
generate the Clifford algebra in eight dimensions.

After a straightforward calculation, we find thatD is given by

D = d + e0
(
ċ

c
Γ08 − a

4c2
Γ11̂ − a

4c2
Γ22̂ − b

4c2
Γ33̂

)

+ e1
(
ċ

c
Γ18 + a

4c2
Γ01̂ + a

4c2
Γ32̂ − b

4c2
Γ23̂

)

+ e2
(
ċ

c
Γ28 + a

4c2
Γ02̂ − a

4c2
Γ31̂ + b

4c2
Γ13̂

)

+ e3
(
ċ

c
Γ38 + a

4c2
Γ21̂ + a

4c2
Γ12̂ − b

4c2
Γ03̂

)

+ e1̂
(

ȧ

2a
Γ1̂8 +

(
a

4c2
− 1

4a

)
(Γ01 + Γ23) − b

4a2
Γ2̂3̂

)
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+ e2̂
(

ȧ

2a
Γ2̂8 +

(
a

4c2
− 1

4a

)
(Γ02 + Γ31) − b

4a2
Γ3̂1̂

)

+ e3̂

(
ḃ

2b
Γ3̂8 +

(
b

4c2
− 1

4b

)
(Γ03 + Γ12) +

(
b

4a2
− 1

2b

)
Γ1̂2̂

)
. (48)

Substituting in the first-orderequations (15), this becomes

D = d + e0
(

a

4c2
(2Γ08 − Γ11̂ − Γ22̂) + b

4c2
(Γ08 − Γ33̂)

)

+ e1
(

a

4c2
(2Γ18 + Γ01̂ + Γ32̂) + b

4c2
(Γ18 − Γ23̂)

)

+ e2
(

a

4c2
(2Γ28 + Γ02̂ + Γ31̂) + b

4c2
(Γ28 − Γ13̂)

)

+ e3
(

a

4c2
(2Γ38 − Γ12̂ + Γ21̂) + b

4c2
(Γ38 − Γ03̂)

)

+ e1̂
((

1

4a
− a

4c2

)
(2Γ1̂8 − Γ01 − Γ23) − b

4a2
(Γ1̂8 + Γ2̂3̂)

)

+ e2̂
((

1

4a
− a

4c2

)
(2Γ2̂8 − Γ02 − Γ31) − b

4a2
(Γ2̂8 + Γ3̂1̂)

)

+ e3̂
(

b

4a2
(Γ3̂8 + Γ1̂2̂) − b

4c2
(2Γ3̂8 − Γ03 − Γ12) − 1

4b
(2Γ1̂2̂ + Γ03 + Γ12)

)
.

(49)

It is now straightforward to see that in this frame, a spinorη satisfiesDη = 0 if it has
constant components, and if in addition it satisfies the projection conditions:

(2Γ08 − Γ11̂ − Γ23̂)η = 0, (Γ08 − Γ33̂)η = 0, (2Γ18 + Γ01̂ + Γ32̂)η = 0.

(50)

These conditions define a unique spinor, up to overall scale, thus providing another proof
that the metrics have Spin(7) holonomy.

The covariantly constant self-dual 4-form� given in (13), known as the Cayley form,
provides a calibration of the Spin(7) manifold. Thus we have

|�(X1, X2, X3, X4)| ≤ 1, (51)

where(X1, X2, X3, X4) denotes any quadruple of orthonormal vectors. This can be seen
from (13), or else by noting that the components of� can be expressed in terms of the
parallel spinorη as�ABCD = η̃ΓABCDη. A calibrated submanifold, or Cayley submanifold,
Σ, is one where for each point ofΣ:

|�(X1, X2, X3, X4)| = 1, (52)

where the orthonormal vectorsXi are everywhere tangent toΣ. By inspecting(13) we
therefore see that theS4 zero section of the bundle of chiral spinors is a Cayley submanifold,
and hence it is volume minimising in its homology class.
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Thus in summary we have the following proposition.

Proposition 4.1. The gradient flow equations (15) are the necessary and sufficient condi-
tions for the local metric (8) to have holonomy Spin(7). The covariantly constant spinor is
defined by (50), and the Cayley 4-form is given by (13).

5. L2-normalisable harmonic 4-forms in A8 and B8

In this section, derive the equations for harmonic 4-forms in the Spin(7) manifolds. We
obtain explicitL2-normalisable harmonic 4-forms for each of the new Spin(7) 8-manifolds
A8 andB8. Specifically, we obtain one such 4-form, which is anti-self-dual, for the manifold
A8 that is topologicallyR8, and two such 4-forms, one of each duality, for the manifoldB8
of the chiral spin bundle overS4.

The structure of the harmonic 4-forms turns out to be closely related to that of the
calibrating 4-form� given in(13). Thus we define

G±
(4) = ω(4) ± ∗ω(4), (53)

where

ω(4) ≡ u1e
0 ∧ e1 ∧ e2 ∧ e3 − u2(e

2̂ ∧ e3̂ ∧ Ĵ1 + e3̂ ∧ e1̂ ∧ Ĵ2) + u3e
1̂ ∧ e2̂ ∧ Ĵ3.

(54)

G±
(4) will be harmonic if dG±

(4). This implies that

±d(c4u1)

dt
−2bc2u2+4ac2u3=0, ±d(a2c2u2)

dt
− a2bu1 + bc2u2 + 2ac2u3 = 0,

±d(abc2u3)

dt
+ a2bu1 + bc2u2 = 0, (55)

where the± signs correspond to self-dual and anti-self-dual, respectively. (The Cayley form
given in(13) is a particular solution, corresponding to takingu1 = u2 = −1, u3 = 1.)

In the case of the new Spin(7) manifoldsA8 andB8, with their simple metrics(35) and
(37), we can now obtain explicit results forL2 harmonic 4-forms. In the remainder of
this section, we shall for convenience set the scale parameters� and �̃ in the metrics
(35) and (37)to unity. Care must be exercised when taking the square roots ofa2, b2

and c2 in the metrics(35) and (37), if one wants the functionsa, b and c to solve pre-
cisely the first-orderequations (15), since these equations are sensitive to the signs of
a, b and c. (Of course there are equivalent first-order equations that differ by precisely
these sign factors, and which also imply solutions of the Einstein equations.) We are
assuming here that the signs are chosen so that precisely(15) are satisfied. This can
be achieved by taking all square roots to be positive, except forb in the case of(35)
onA8.

For the metric(35) on the manifoldA8 that is topologicallyR8, we find that there is a
normalisable harmonic 4-form that is anti-self-dual, i.e., the lower choice of the sign is used
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in (53) and (55). The solution is given by

u1 = 2

(r + 1)3(r + 3)
, u2 = − r2 + 10r + 13

(r + 1)3(r + 3)3
, u3 = − 2

(r + 1)2(r + 3)3
.

(56)

The norm of the harmonic anti-self-dual 4-form is then given by

|G(4)|2 = 18(u2
1 + 2u2

2 + 4u2
3) = 96(3r4 + 44r3 + 242r2 + 492r + 339)

(r + 1)2(r + 3)6
. (57)

ClearlyG(4) is L2-normalisable, and in fact we have
∫∞

1
√
g|G(4)|2 dr = 9/4. We have

chosen the integration constants from(55) appropriately in order to select the solution in
L2. (There also exists a solution for a self-dual harmonic 4-form. It can be made square
integrable at small distance, but there is no choice of integration constants for which it is
L2-normalisable, owing to its large-distance behaviour.)

For the metric(37) on B8, the bundle of chiral spinors overS4, we find that there exists
a normalisable harmonic 4-form that is anti-self-dual, i.e., the lower choice of sign is used
in (53) and (55). The solution is given by

u1 = 2(r4 + 8r3 + 34r2 − 48r + 21)

(r − 1)3(r + 1)5
, u2 = r4 + 4r3 − 18r2 + 52r − 23

(r − 1)3(r + 1)5
,

u3 = 2(r2 + 14r − 11)

(r − 1)2(r + 1)5
. (58)

The square of the anti-self-dual 4-form is given by

|G(4)|2 =
96(3r8 + 40r7 + 252r6 + 1064r5 + 2506r4 − 12936r3

+18284r2 − 10824r + 2379)

(r − 1)6(r + 1)10
(59)

and itsL2-normalisability can be seen by noting that
∫∞

3
√
g|G(4)|2 dr = 189/16.

We also find a secondL2-normalisable harmonic 4-form in the new Spin(7) manifold
B8. This 4-form is self-dual, with the upper sign chosen in(53) and (55)and is given by

u1 = −2(5r3 − 9r2 + 15r − 3)

(r − 1)3(r + 1)4
, u2 = (r − 3)(5r2 − 2r + 1)

(r − 1)3(r + 1)4
,

u3 = − 2(r − 3)

(r − 1)2(r + 1)4
. (60)

In contrast to the previous harmonic 4-forms, there is no linear relation between the functions
u1, u2 andu3 here. The magnitude ofG(4) is given by

|G(4)|2 = 96(75r6 − 350r5 + 829r4 − 932r3 + 885r2 − 414r + 99)

(r − 1)6(r + 1)8
. (61)

It integrates to give
∫ χ

3
√
g|G(4)|2 dr = 189/4.
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It is interesting to note that for the anti-self-dual harmonic 4-form onA8, given by(56),
we can write it in terms of a globally defined potential,G(4) = dB(3). Specifically, we find
thatB(3) can be written as

B(3) = −(r − 1)2
[

1

(r + 1)2
R1 ∧ R2 ∧ R3 + 1

8(r + 3)2
(R1 ∧ J1 + R2 ∧ J2)

+ (r + 5)

4(r + 1)(r + 3)2
R3 ∧ J3

]
. (62)

One can see from(35) that this has a vanishing magnitude|B(3)|2 at r=1. On the other
hand, the analogous expressions for the potentialB(3) for the two harmonic 4-forms(58)
and (60), which are similarly expressible as functions ofr times the three 3-form structures
in (62), turn out to have a diverging magnitude atr = 3. In all three cases ther-dependent
prefactors tend to constants at infinity.

Our results on harmonic forms are summarised in the following proposition.

Proposition 5.1. The metric A8 of Proposition 3.2has Spin(7) holonomy and admits an L2

harmonic 4-form,given by (53)and (56),whose duality is opposite to that of the Cayley form.
The metric B8 of Proposition 3.3has Spin(7) holonomy and admits both an anti-self-dual
L2 harmonic 4-form, given by (53)and (58), and a self-dual L2 harmonic 4-form, given by
(53) and (60).
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