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Abstract

We construct new explicit non-singular metrics that are complete on non-compact Riemannian
8-manifolds with holonomy Spin(7). One such metric, which we denotégyis complete and
non-singular orR®. The other complete metrics are defined on manifolds with the topology of
the bundle of chiral spinors ove, and are denoted g, B; andBg. The metrics orB3 and
Bg occur in families with a non-trivial parameter. The metriclarises for a limiting value of
this parameter, and locally this metric is the same as the onggfoFhe new Spin(7) metrics are
asymptotically locally conical (ALC): near infinity they approach a circle bundle with fibres of
constant length over a cone whose base is the squashed Einstein metfié.aNe construct the
covariantly constant spinor and calibrating 4-form. We also obtaifiZanormalisable harmonic
4-form for theAg manifold, and two such 4-forms (of opposite dualities) forIgemanifold.
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1. Introduction

Few explicit examples of complete non-compact manifolds admitting Ricci-flat metrics
with the exceptional holonomi&s; in seven dimensions or Spin(7) in eight dimensions are
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known. Three asymptotically conical examples have been four 4a 7, for manifolds

with the topology of the bundle of self-dual 2-forms s§hor CP?, and the spin bundle of
$3[1,5]. In D = 8 the only Spin(7) example that was known was defined on the chiral spin
bundle ofs* [1,5].

In this paper, we give a construction of new eight-dimensional metrics of Spin(7) holon-
omy, and show thatamong these are examples that are complete on two different non-compact
manifolds. It represents the elaboration and simplification of the original construction in
[4]. The new metrics are all asymptotically locally conical (ALC), locally approaching
R x §1 x CP3. The radius of thes™ is asymptotically constant, so the metric approaches an
s1 bundle over a cone with bag&P®. However, the Einstein metric on tfizP2 at the base
of the cone is not the Fubini—Study metric, but instead the “squashed” metric described as
ans2 bundle overs®. The new solutions can have very different short-distance behaviours,
with one approaching flak8 whilst all the others approadk* x $* locally. The global
topology is that ofR® in the first case and the bundle of positive (or negative) chirality
spinors overs* for the others. An intriguing feature of two of the new metrics, one on each
of the inequivalent topologies, is that in local coordinates the metrics are identical. Globally,
the metric is complete on a manifold &P topology if the radial coordinateis taken to be
positive, whilst in the region with negativeit is instead complete on the manifdids*)
of the bundle of chiral spinors ovet*. We shall denote the new Spin(7) manifold with
R® topology byAg, and the new related manifold wif(s*) topology byBg. The more
general classes of new manifolds with the topology of the chiral spin bundleséwgill
be denoted b andBj .

Our construction is a generalisation of the one that leads to the previously known metric
of Spin(7) holonomy. That example is given, in local coordinateg1{H):

-1
2__r_010/3 2&2_@10/32322
ds8_|:1 (r) o + o5 |1 (r) he + oo de, 1)

where
h,’EO‘i—Ai, (2)

theo; are left-invariant 1-forms on S@), dsz§ the metric on the unit 4-sphere, aAdthe
potential of the BPST S(2) Yang—Mills instanton ors*. Theo; can be written in terms of
Euler angles as

o1 = cosyr db + sinyrsiné dy, o2 = —siny dd + cosyrsiné dy,
o3 = dyy + cosdde. 3)

The principal orbits ar&”, viewed as ar$3 bundle overs®. The solution(1) is asymptotic
to a cone over the “squashed” Einstein 7-sphere, and it appro&éhes* locally at short
distance (i.er ~ £). Globally the manifold has the same topold§s*), the bundle of
chiral spinors oves*, as the new Spin(7) manifoldsg and]B%Bi that we obtain in this paper.

2. Einstein equation and first integralsfor Spin(7) metrics

The generalisation that we shall consider involves allowingsthiibres of the previous
construction themselves to be “squashed”. In particular, this encompasses the possibility
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of having an asymptotic structure of the “Taub-NUT type,” in which &R@) fibres in a
description ofs® as al/(1) bundle overs? approach constant length while the radius of the
52 grows linearly.

A convenient way to parameterise the metric is by first introducing the left-invariant
1-forms L ag for the group manifold SO(5). These satidfyg = —Lpa, and

dLag = Lac A Lca. 4)

The 7-sphere is then given by the coset(SPSU(2) ., where we take the obvious SO(4)
subgroup of SO(5), and write it (locally) as 8); x SU(2)g. If we take the indiced and
Bin Lagtorange overthe values® A < 4, and splitthemad = (a,4),with0O <a < 3,
then the SO(4) subgroup is given Byg. This is decomposed as $2); x SU(2)x, with
the two sets of SU(2) 1-forms given by the self-dual and anti-self-dual combinations:

Ri = 3(Loi + 3€ikLi),  Li=3(Loi — 3€ikLik), (%)
where 1< i < 3. Thus the seven 1-forms in tis€ coset will be

R1, R2, R3, Py = Loa. (6)
It is straightforward to establish that

dPo= (R1+ L1) A P+ (R2+ L2) A P2+ (R3+ L3) A P3,

dPy = —(R1+L1) A Po— (Rp — L) A P3+ (R3— L3) A P,

dP; =(R1— L)) AP3— (R2+ L) A Pop— (R3— L3) A Py,

dP3 = —(R1— L1) A P2+ (R2 — L) A P1 — (R3+ L3) A Py,

dR1 = —2R2 A Rz — 3(Po A PL+ P2 A P3),

dR, = —2R3 A R1— 2(Po A P2+ P3 A Py),

dR3 = —2R1 A Ry — 3(Po A Ps+ PLA P2). (7)

In terms of these left-invariant 1-forms, we can write the ansatz for the more general metrics
of Spin(7) holonomy on th&* bundle overs* as

ds§ = dr® + 4a®(RS + R3) + 4b*R5 + ¢*PZ. 8)
We shall work with an orthonormal frame buneté defined by
B=d, =2aR, 2=2aR, S =2bRs, " =cP, 9)

where we take the indexto range over (< a < 3.
The factors of 4 in the terms involving andb? in (8) are included for consistency with
the conventions ifd]. In that paper, the metric was written as

dsg = di? + a®(Du')? + b%0? + 2 dﬂi, (10)
where

Dyl =du + EijkAj,uk, o=dp+ A, A= coshdy — u'A’ (12)
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andy; are coordinates dR3 subjectto the constraiptu; = 1 thatdefines the unit 2-sphere.
In terms of the left-invariant 1-formB; and P, of this paper, we have the correspondences:

(Du')? = 4(R2+ R3), o =2R3,  dQF=P? (12)

together with di’ + (1/2)€jjA’ A A% = J'.

We can derive first-order differential equations for the three metric functiohsindc,
which will imply Spin(7) holonomy, by requiring the existence of a closed self-dual 4-form
that has the symmetries of the octonionic structure constants. Itis straightforward to see that
an appropriate 4-form, invariant under the isometries of the metric and with the required
octonionic structure, is given by

Dy = —eo/\el/\ez/\es—eSAel/\eeré+%eijke;/\e}/\f]k—l—es/\e;/\ji
(13)

with 7% = ¢2J7 = (1/2)Jipe Aeb, 1 < i < 3, where

Ji= Po A P; + %Eijkpj A Py (14)
are the three self-dual quaternionic-Kahler 2-forms on thedfhinetric P2.

From(7) we see that @4y = 0 implies the first-order equations:
b a® . b2 b a b
':1____’ = — - —, C—= — _ 15
4 2a 2 2a2 (2 ¢ c 2 (15)

These equations imply that the metf&) has Spin(7) holonomy, and also, therefore, that it
is Ricci-flat.

Itis sometimes convenient to express the equations fioandc as a Lagrangian system.
We find that the equations for Ricci-flatnesg®)fcan be derived by requiring that= 7—V
be stationary with respect to variationsegfs andy, where

T = 20(’2 + 12]//2 +40l/,3/ + 8,3/)// + 164/ /’

V = 10%c* (40 + 2a%b? — 24a%c? — 4aPc* + b2cY), (16)
together with the constrairit+ V = 0. Here a prime denotes a derivative with respect to a
new radial variable, defined by d = a?bc? dp, and we have also defined= loga, g =
logb, y = logec.

We find that the potentiaV can be derived from a superpotential, which we denote
by W. Writing T = (1/2)gjj (do! /dp)(da’ /dp), wherea; = (a, B, y), we haveV =
—(1/2)gij (dW/da) (dW/der/ ), where

W = bc?(4a® + 2a°b + 4ac® — bc?). (17)

From this, we can obtain the first-order equationy/dn = g'9W/da/. Expressed back in
terms of the original radial variableintroduced in(8), these equations are precisely those
given in(15).

To summarise, we have the following propaosition.

Proposition 2.1. Metrics of the form (8) are Ricci-flat if and only if a, b and ¢ satisfy the
Euler—Lagrange equations following from (16). The gradient flow defined by (15) provides
threefirst integrals which solve these second-order Euler—Lagrange equations.
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Before proceeding to find new solutions to these first-order equations, we can first verify
that the previous Spin(7) metr{d) is indeed a solution. Also, we may observe that one of
the seven-dimensional metrics 66 holonomy has principal orbits that a3, viewed
as ans? bundle overs?, and is given, in local coordinates, f,5]:

2 54 - 2 2 £4 2 2 12 2
dsy = 1_ﬁ drc +r l_r_4 (R1+R2)+§r Py (18)

This therefore gives a solution i = 8 of the form &2 = ds2+dg?, and it can be described
within the framework of our first-ordezquation (15)y first rescalingp — b, and then
sending\ to zero, so thab = constant is allowed as a solution.

One can also see the specialisations to the previous results described above at the level
of the first-order equations themselves. Setting b gives a consistent truncation (f5),
yieldinga = (1/2)a?c=2, ¢ = (3/2)ac™1, which are indeed the first-order equations for
the original Spin(7) metrics. On the other hand, sending 0 in (15) yields a consistent
truncation taz = 1 — a?c~2, ¢ = ac~1, which are the first-order equations for the metrics
of G, holonomy whose principal orbits a# bundles oves*. (The first-order equations
for these two cases can be found, for examplg3]n) Also, we may note that a special
solution arises if we sét = —a, which then implies: = —b = +¢ = (1/2)z. This is flat
space.

Another specialisation of the metric ansé®) that makes contact with previous results
is to seta = ¢, in which case thes? bundle overs* becomes precisely the usu@P?
Einstein manifold, with its SU(4)-invariant metric. This is incompatible with the first-order
equations (15)but it is easily verified that it is consistent with the second-order Ein-
stein equations following fron{16). Solutions to these second-order equations then in-
clude the eight-dimensional Taub-NUT and Taub-Bolt metrics. The incompatibility with
the first-order equations is understandable, since the Taub-NUT and Taub-Bolt 8-metrics do
not have special holonomy. Another previously seen solution of the second-order equations
with @ = ¢ is the Ricci-flat Kahler metric on the complex line-bundle o@&. Although
this can arise from a first-order system, it is an inequivalent one that is not related to a spe-
cialisation of(15). Its superpotential i8/ = 24° + 64*b? [2], with T, V andg;j; following
from settinga = ¢ in (16). (Other examples of this kind of phenomenon were exhibited
recently in[3].)

3. General solution of the gradient flow
3.1. The general solution: local analysis

In order to obtain new solutions of the first-ordsguations (15)we first introduce a
new radial coordinate, defined in terms of by dr = b d. After also definingf = 2, we
find by taking further derivatives of the first-ordequations (15})hat f must satisfy the
third-order equation:

212" 4 2f(f = — (f +D(f —D(f -3 =0 (19)
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which can be expressed in the “factorised” form:
fQ—(f+1Q=0, (20)
whereQ = 2fW + (f' — 3)W andW = f’ — 1. The remaining metric functions are then
given by solving
, /=2 (ff—=Ma 5 2a

a = —

2a 2f 1

(21)

Naively there now appear to be four constants of integration in total rather than the expected
three, but the extra one is eliminated by substituting the solutions bac{ditdn fact for

a generic solution, wherg@ itself is non-zero, the solution far, and hence fob, can be
written entirely algebraically in terms gf, with

, (=D =3 2
a“ = , b= .
0 =1

Thus for a solution wher@ # 0 the three integration constants for the first-order system

(15) are simply the three integration constants for the third-oedgration (19)and no

further substitution back int(19) is necessary. As we shall see bel@vis non-vanishing

for all but one degenerate solution(@®). Note that two of the three constants of integration

are “trivial,” corresponding to a constant shift and rescaling of the radial coordinate.
The general solution tBq. (19)may be obtained as follows. First, introduce a new radial

variablep, and a function/(p), defined by

P odp d
) = exp[— / u] Y, 23)
v(P) dr

(22)

implying also that

2 3
d°f 14 &f 1 (p<+ Qz>.

= —+vy
y dp

WS BT (24)

(We assume here, and in the rest of this subsection, that ds not a constant, and o
is a good radial variable. The special cases whefelidis a constant are included in the
discussion irSection 3.2 Eg. (19)now reduces to

dy

2y, T =01~ P9 B —p). (25)
The further replacement gfby z, andp by v, defined by
(1 - p)?
I=— v=p-—1 26
20-p—-yp g (26)

turns(25)into

d
&u—q%a§=v+2z 27)
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The solution to this equation can be written in terms of the hypergeometric function as
2k /z 15 2
= ———7 —20F |1 ;- 1- . 28
V= X2 1[ 512 z] (28)
Retracing the steps of the various redefinitions, we see that by tiamthe radial variable
the general solution (with ffdr not a constant) for the Ricci-flat metric can be written as

_ 1/2 z -
azz—(v Z)Zf, b:é, C25f<1+z> exp[/ —— 5" dZ = i| (29)
A+ v v 1-z2 V(D)1 —-2?)
The coordinate is given in terms ot by
fdz
y = —
v(z)(1—7?)
and so we have the following proposition.

(30)

Proposition 3.1. Thelocal Ricci-flat metrics arising from the gradient flow (15) are given
by
s of dz2 4(v — 2)
T a1-DHA-0v-2) L+
with v defined by (28) and f defined by (29).

16(v — 2)f
1+ )08

(RI+R3)+ R3+P2 (31)

Note also thak in the solution(28) for v(z) is the non-trivial third constant of integration
of the original first-order systeifi5). In obtaining this general solution we have assumed
that Q is non-zero, so that can be obtained usin@2). In fact if Q is zero it can easily
be seen that unless in additiorf/dr is a constant (which we have excluded from the
analysis in this subsection), then after us{@gj) and substituting back intd.5), the metric
functionsa, b andc would all vanish. Thus the only additional solutiong1®), other than
those described b§B1), are those with @/dr = constant, and these are included in the
discussion irSection 3.2

3.2. Secial globally defined solutions

As we shall show latter, the general Ricci-flat metrics obtaineSdntion 3.linclude
one-parameter families of examples that are complete on manifolds with the topology of the
bundle of chiral spinors ovet*. The parameter in question is a non-trivial one, as opposed to
the two trivial parameters associated with a constant shift and scaling of the radial coordinate.
Before discussing these families of complete metrics, we shall first discuss some simple
solutions of the first-ordexquations (15)itis easier to discuss these in terms of the original
radial variabler used in writing(19). After absorbing a trivial constant shift of the radial
variable we can write down three elementary solution@ 8j, namely

2

f=-rn  f=3%  f=rtos (32)

where! is a constant. The first two solutions here are of the type whéidr-ds a constant,
which were excluded in the general analySextion 3.1
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e The solution withf = —r hasQ = 8 and so we can ug@2), to find
a® = -7, b= —a, - (33)
It follows from (8) that the metric in this case is just the trivial flat metric®® with
r < 0. In terms of the description usingandv introduced inSection 3.1it corresponds
to a degenerate solution at the paintv) = (1, —2).
e The solution withf = 3r hasQ = 0, and so here we must solve fousing(21). After
making a coordinate transformatien- 3r2,/20, this solution is

10/3
a? = %r |:1 — (TTO) / ] , b=a, 2= 2—90r2. (34)
This can be recognised as the previously known complete metric of Spin(7) holonomy
[1,5], as given in(1). (The trivial scaling constanty arose here in the integration of
the equation fo in (21).) Note that because this solution h#s = constant, it is
not contained within the general analysisS#gction 3.1except as a singular limit that
corresponds to the poit, v) = (—1, +2).
e The third elementary solution i{82), f = r 4+ r?/(2¢?), gives rise to our first examples
of new complete metrics of Spin(7) holonomy. After a coordinate transformatien
—L(r 4+ £), the metric in local coordinates becomes

(r + 0)%dr? 40%(r + 30)(r — 0)
(r+30)F —£) (r+0)2

1
+ E(r2 — 3 P2 (35)

dsg = RS+ (430 — (RS + R3)

Assuming that the constanis positive, it is evident thatshould lie in the range > ¢.
We can analyse the behaviour neat ¢ by defining a new radial coordinate where
0% = 4(r — £). Nearp = 0 the metric approaches

ds§ ~ dp® + p?(Rf + RS + R5 + 1 P). (36)

The quantityRi + R% + R§ + (1/4)d9§) is precisely the metric on the unit 7-sphere,
and so we see that near= ¢ the metric d3 smoothly approaches fI&®. At larger the
functionb, which is the radius in th&/(1) directionR3, approaches a constant, and so the
metric approaches ast bundle over a 7-metric. This 7-metric is of the form of a cone
over CP? (described as th&2 bundle overs?) in this asymptotic region. The manifold
of this new Spin(7) metric, which we are denotingAw, is topologicallyR8. In terms of
the description irBection 3.1this solution corresponds to a trajectory in thev) plane
with z = 1, andv running fromv = —2 (at the origin) tov = —oo (in the asymptotic
region). Thus we have the following proposition.

Proposition 3.2. The metric Ag given by (35) with » > ¢ > 0 admits a smooth complete
non-singular extension to R8.

We shall use the acronym AC to denote asymptotically conical manifolds. Thus asymp-
totically our new metrics behave like a circle bundle over an AC manifold in which the
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length of thel/(1) fibres tends to a constant. The acronym ALF is already in use to describe
metrics which tend to &(1) bundle over an asymptotically Euclidean or asymptotically
locally Euclidean metric with the length of the fibres tending to a constant. We shall there-
fore adopt the acronym ALC to denote manifolds where the base space of the circle bundle
is asymptotically conical.

Ricci-flat ALC metrics, although not with special holonomy, have already been encoun-
tered. For example, the higher-dimensional Taub-NUT metric is defin&ofor all » and
itis ALC with the base of the cone beir@P” L. A closely related example is the Taub-Bolt
metric which has the same asymptotics but is defined on a line-bundl€er. How-
ever, the metric on the base of the cone in this case ithd) is the Fubini—Study metric
on CP3, which is quite different from that of the “squashed” Einstein metricGH#? in
our new metrics. A discussion of ALE Spin(7) manifolds based on the idea of blowing up
orbifolds has been given ii]. As far as we are aware, no explicit examples of this kind
have yet been found.

We get a different complete manifold, which we are denotingpyif we taker to be
negative. It is easier to discuss this by instead setting—¢, where? andr are taken to be
positive. Thus instead ¢B5) we now have

N2 .2 520 _
42— r=0 dr~ +4£ (r Sﬁ)(r+1£) R+ (r— 30+ D(R2 + RD)
(r—30)(r+20) (r —0)2

1 -
+ E(r2 - P2 (37)

This time, we have > 3¢. Definingp? = 4¢(r — 3¢), we find that near = 3¢ the metric
has the form:

ds3 ~ do® + p?(R? + R3 + R3) + ¢2P2. (38)

The quantity(R% + R% + R%) is the metric on the unit 3-sphere, and so in this case we find
that the metric smoothly approach&$ x $# locally, at small distance. The large-distance
behaviour is the same as for the previous &8 In the(z, v) plane ofSection 3.1this
solution corresponds to a trajectory with= 1, andv running fromv = 42 (at the origin)

to v = 400 (in the asymptotic region). Thus we have the following proposition.

Proposition 3.3. The metric Bg given by (37)with r > 3¢ > 0 admits a smooth complete
non-singular extension to the chiral spin bundle over S%.

Again we have a complete non-compact ALC metric with Spin(7) holonomy with the
same base. At short distance, it has the same structure as the previously known metric of
Spin(7) holonomy, obtained ii®].

We can think of the new manifoldg as providing a smooth interpolation between
Euclidean 8-space at short distance, andhbundle overMy7 at large distance, whilBg
provides an interpolation between the previous Spin(7) manifo[d,5f at short distance
and theS bundle overMy7 at large distance. Her#17 denotes the 7-manifold of»
holonomy that is the® bundle overs* [1,5].
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3.3. General globally defined solutions

Having discussed some special solutionfl&f) in Section 3.2and having seen that they
include new complete metrics of Spin(7) holonomy, we now turn to a discussion of the
global structure of the general solutiof®d).

In order to recognise the solutions that give rise to complete non-singular metrics, it is
helpful first to study the phase-plane diagram for the first-oedgration (27)which can
be expressed as

& _ 2z(1 - z%), LR 2z, (39)
dr dr
wherer is an auxiliary “time” parameter. The solutions can be studied by looking at the flows
generated by the 2-vector fiejdz/dz, dv/dt} = {2z(1 — z2), v + 2z} in the (z, v) plane.
For any such flow, it is then necessary to investigate the global structure of the associated
metric(31) for regularity.

We find that regular solutions can arise in the following four cases, namely

(D Ag: z=1(fixed); v=-2 to— oo,

(20 Bg: z=1(fixed); v=+4+2 to + oo,

3 Bg: zo<z=<l wv=+4+21t0 +o00, O0<zog<1,

) ]Bg: 1<z<z0; v=+421t0 +00, l<zg<oo oOr zo< —1
(see discussion belgw (40)

Note thaty = d-oco corresponds to the asymptotic large-distance region, and in all four cases
the metrics have similar asymptotic structures, precisely as we have already seefign the
andBg cases. The point = —2, z = 1 corresponds to the short-distance behaviour of the
Ag metric, approaching Euclidedf at the origin where th&” principal orbits degenerate
to a point. Whern» = 2, on the other hand, we have the short-distance behaviour seen in the
Bg metric, approachin®* x $* locally. In fact solution (1) is the metri85) on Ag found
in Section 3.2and solution (2) is the metri@7) on Bg found there also. These both have
k= 0in(28).

Solution (3) arises whehis any positive number, witky being the corresponding value
of z at whichv(zg) = 2, with 0 < zg < 1. The value ofg is correlated with the value @f,
ranging fromzg = 0 fork = oo, t0zg = 1 fork = 0.

Nearz = 1 it follows from (28) that we shall have

v=2%1 -V —24..., f=col—2)Y2 ..., (41)

wherecg is an arbitrary constant of integration. Definings (2co)~Y/2(1— z)~1/4, we see
that asx — 1 we shall havey — oo and

2V 2¢o
k2

and so this more general metric has the same large-distance asymptotic forgardb

Bg. Nearz = zo we shall havey(z) = 2+ v'(z0)(z — z0) + - - -, and defining a new radial

1
dsg ~ dy® + y2(RE + R3) + 5y*Pe + R3 (42)



360 M. Cveti¢ et al./ Journal of Geometry and Physics 49 (2004) 350-365

coordinater by (z — zo) = (1/4)x2 nearz = zo, we shall have

dsg ~ fO
220(1—2z3)(1—z0)V' (z0)

[dx®+ v/ (20)%28(1—20)2x*(R3 + R3+ R3)] + fo P2
(43)

where fy is the value off atz = zo. From(27) we have thato(1 — zo)v'(z0) = 1, and
so we see fron{43) that at short distance the metii¢3) approache®* x $* locally.
Thus these more general solution (3)(#0) with k > 0 is complete on a manifold that
is very similar to the manifoldg of the solution(37), with an $* bolt atz = zg. Here,
the trajectory in thez, v) plane runs fromzg, 2) to (1, oo). We shall denote the solution
by Bg , where the superscript indicates thatarts from a valuep < 1 at short distance,
flowing to z = 1 asymptotically. For the cage= 0, which leads to the metri¢85) and
(37), the quantity; is not a good choice for the radial coordinate, since it is fixed-atl.
This case can be regarded as a singular limit within the general formalism we are using
here. Specifically, if we let = 1 — 16¢*¢4(r + £) 4, k = 2%/4¢, and choose the integration
constant in(29) so thatf = (1/2)(r2 — £2), then upon sending to zero we recover the
metric(37).

Solution (4) arises in the case where at large distarmaw approaches 1 from above,
and again the flow runs from &t bolt at whichu(zg) = 2, to the asymptotic region as
approaches 1. There are two possibilities, wileither being greater than 1, or elggis
less than-1. In the latter casethen runs fronyg at the bolt, through = —oco to +00, and
then down toz = 1 in the asymptotic region. It is useful now to make another change of
radial coordinate, and define= 1/z. This allows the two regions fafp to be combined.
The solution forv may now be written as

v= 1Y) Y+ y2Rl3, 332D, (44)

The y coordinate then ranges from = yg at the bolt toy = 1 at infinity, and—1 <
yo < 1. The integration constamnt is determined in terms ofg by the requirement
thatv = 2 aty = yp. It can range between = 2./7I1(5/4)/1(3/4), corresponding
to yop = —1, ande = —2/7I(5/4)/I(3/4), corresponding (by taking a suitable limit)
to yo = +1.

A similar analysis to that for solution (3) above now shows that the metric in solution
(4) smoothly approaché®* x $* locally aty = yo, and that it has the same asymptotic
behaviour as the previous examples. We shall denote this soluti(ﬁiﬁgbwote that the
simple squtioriB%gr in (37)can be viewed as the— 0 ork — —2/x1(5/4)/(3/4) limit
of the more complicateBg or IB%;{ solutions, respectively.

We observed at the end$éction 2hat a particular example of a solution of the first-order
equations (15)s the direct product metrics§ = ds? + d®?, where d? is the Ricci-flat
7-metric of G, holonomy on thék3 bundle overs* [1,5], andy is a coordinate on a circle.
We are now in a position to see how this solution can arise as a limit of our new Spin(7)
metrics. Specifically, it arises as tihe— oo limit of solution (3) listed in(40). This is
the limit where the constant, which sets the lower limit for the range < z < 1 for z,
becomes zero. At the same time as senditainfinity, we can rescale the fibre coordinate
@ appearing inRRz = (1/2) dp + - - -, according tagp — kg.
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From(28) and (29}t follows that whenk becomes very large we shall have

1/2
Vo 2%z Fo (1+z)

1- 2) 1/4° 1-—z (45)

and so in the limit of infinitek the metric(31) becomes

dz2 4z

ds§ =
BT RA- 20— T A=)V

1+42\"?
2(R1+R2)+(1 i) P2 + dg?.
(46)

Defining a new radial coordinateby r* = (1 + z)(1 — z)~%, we see that this becomes
dsg = ds% + d(pz, where

2dr2
]__

ds? = 2+ 271 —r (R + R3) + r*P. (47)

This can be recognised as the metricefholonomy on the manifold 17 of theR3 bundle
over %, which was constructed i1,5]. (If we had not rescaled the fibre coordinatby a
factor ofk before taking the limik — oo, the radius of thes* would have tended to zero,
this limit being taken in the sense of Gromov—Hausdorff.) Thus the family of new Spin(7)
manifolds that we are denoting Bz has a non-trivial parametérsuch that thé& = oo

limit degenerates td17 x S, while thek = 0 limit reduces to the caskg given by(37).

4, Parallel spinor and calibrating 4-form

The fact that the metri¢8), together with(15), has Spin(7) holonomy implies, and is
implied by, the existence of a globally defined parallel spinor figldatisfyingDn = 0,
whereD = d+(1/4)&as I as is the Loreutz-covariant exterior derivative that acts on spinors
in eight dimensions. HerExg = (1/2)(I'aI's — I's4), andl'4 are the Dirac matrices that
generate the Clifford algebra in eight dimensions.

After a straightforward calculation, we find thatis given by

D=d+¢° E[' _i[u_i[u_iIﬁ
= o 08T 2t T p27 227 g2 38

¢ a a b

EF18+EF01+@F32_@F2§
s fcC a a b
Tt 5l — a5l6t 5500

c
c

w

1
a b
CF38+462 21+462F12 462Foé
s a

a 1 b
201"18—1— <@—£> (F01+F23)_EF2§)

+e
+e
+e
+ et

(
(
(
(
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5(a a 1 b
+e _F?8+ = (["02_1’_ ["31)__2["::;1
sl b b 1 b 1
3
+e (2—b1é8+(_2_4_b>(['03+{‘12)+(_2_z)1ﬁ>_ (48)

Substituting in the first-ordexquations (15)this becomes
0 a b
D=d+e E(Z[‘og—l—'ﬁ—rﬁ)—}-@(1—’08—1—'33)
1 a b
+e @(2F13+F01+F32)+P(F18—Fzé)
a b
@(2158 + I+ Ig5) + @(Fzs —I'3)

a b
E(Zfss— s+ 1) + E(&s— Fog)>

1 a b
<E—@> (2F18—F01—F23)—E(Fig'i‘rgg))

5 1 a b
+e _— - — (ZFQB—Foz—F:g]_)—E(FQS-I—Féi)

af b b 1
+ 3 <@(Ff38+ Iy5) — @(2F§8—F03—F12)— £(2F1§+F03+ Flz)).
(49)

It is now straightforward to see that in this frame, a spinaatisfiesDn = 0 if it has
constant components, and if in addition it satisfies the projection conditions:

(2log— I3 — I'yy)n =0, (I'og — I'yy)n =0, (QIng+ Iy + I'y)n = 0.
(50)

These conditions define a unique spinor, up to overall scale, thus providing another proof
that the metrics have Spin(7) holonomy.

The covariantly constant self-dual 4-fordn given in (13), known as the Cayley form,
provides a calibration of the Spin(7) manifold. Thus we have

|®(X1, X2, X3, Xa)| < 1, (51)

where(X1, X2, X3, X4) denotes any quadruple of orthonormal vectors. This can be seen
from (13), or else by noting that the componentsdfcan be expressed in terms of the
parallel spinom as®agcp = 71 ascpn- A calibrated submanifold, or Cayley submanifold,

X, is one where for each point daf:

[®(X1, X2, X3, X4)| =1, (52)
where the orthonormal vectors; are everywhere tangent t6. By inspecting(13) we

therefore see that th# zero section of the bundle of chiral spinors is a Cayley submanifold,
and hence it is volume minimising in its homology class.
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Thus in summary we have the following propaosition.

Proposition 4.1. The gradient flow equations (15) are the necessary and sufficient condi-
tions for the local metric (8) to have holonomy Spin(7). The covariantly constant spinor is
defined by (50), and the Cayley 4-formis given by (13).

5. L2-normalisable harmonic 4-formsin Ag and Bg

In this section, derive the equations for harmonic 4-forms in the Spin(7) manifolds. We
obtain explicitL2-normalisable harmonic 4-forms for each of the new Spin(7) 8-manifolds
AgandBg. Specifically, we obtain one such 4-form, which is anti-self-dual, for the manifold
Ag that is topologicallyR8, and two such 4-forms, one of each duality, for the manifyd
of the chiral spin bundle ovef*.

The structure of the harmonic 4-forms turns out to be closely related to that of the
calibrating 4-form® given in(13). Thus we define

GZ‘Z) = W) E *ww), (53)
where
w4 Euleo/\el/\ez/\e3—u2(62/\e3/\jl+e3AelA.72)+u361AezAj3.
(54)

G 4 Will be harmonic if G 3, . This implies that

d 4 d 2.2

+ (Cdtul) — 2bc%u, +4ac?u3 =0, i% — a®buy + bc?uy + 2ac’us = 0,
d(abc?

4 4@ | 20y + bcuy = 0, (55)

dr

where thet signs correspond to self-dual and anti-self-dual, respectively. (The Cayley form
given in(13)is a particular solution, corresponding to taking= uo = —1, uz3 = 1.)

In the case of the new Spin(7) manifoldg andBg, with their simple metric¢35) and
(37), we can now obtain explicit results fdr?> harmonic 4-forms. In the remainder of
this section, we shall for convenience set the scale paramétansi ¢ in the metrics
(35) and (37)to unity. Care must be exercised when taking the square roat$, ®?
and c? in the metrics(35) and (37) if one wants the functions, » and¢ to solve pre-
cisely the first-orderequations (15)since these equations are sensitive to the signs of
a, b andc. (Of course there are equivalent first-order equations that differ by precisely
these sign factors, and which also imply solutions of the Einstein equations.) We are
assuming here that the signs are chosen so that predisg)yare satisfied. This can
be achieved by taking all square roots to be positive, excepb fior the case 0f35)
onAg.

For the metrig35) on the manifoldAg that is topologicallyR®, we find that there is a
normalisable harmonic 4-form that is anti-self-dual, i.e., the lower choice of the sign is used
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in (53) and (55) The solution is given by

2 2 +10r + 13 2
U= ———=—-, Upg=————%——=, U3=——"—5——=.
r+D3%+3 r+130 +3)3 (r+1)2(r +3)3
(56)
The norm of the harmonic anti-self-dual 4-form is then given by
96(3r* + 443 4 2422 + 492r + 33
Gal? = 1802 + 23 + 4ul) — OO TAAT+ 2427+ 97 +339 (o)

(r +1)%(r + 3)°

Clearly G4, is L?-normalisable, and in fact we hayg” ,/g|G @4 |? dr = 9/4. We have
chosen the integration constants fr¢s%) appropriately in order to select the solution in
L2. (There also exists a solution for a self-dual harmonic 4-form. It can be made square
integrable at small distance, but there is no choice of integration constants for which it is
L?-normalisable, owing to its large-distance behaviour.)

For the metriq37) on Bg, the bundle of chiral spinors ovéf, we find that there exists
a normalisable harmonic 4-form that is anti-self-dual, i.e., the lower choice of sign is used
in (53) and (55) The solution is given by

2(r* 4 83 + 3472 — 48 + 21) 4+ 4r3 — 182 + 52r — 23
ujg = 5 uz = )
(r =13 + 13 (r = D3¢ +1)°
2(r? 4 14r — 11)
S S e e 58
T T D2(r+ 1) (58)
The square of the anti-self-dual 4-form is given by
96(3r8 + 40r" + 2525 + 1064° + 2506+ — 129363
+182842 — 10824 + 2379
1Gwl? = (59)

(r— 18 + 1)10

and itsL2-normalisability can be seen by noting thgt ,/g|G 4| dr = 189/16.
We also find a seconfi>-normalisable harmonic 4-form in the new Spin(7) manifold
Bg. This 4-form is self-dual, with the upper sign choselfg8) and (55xand is given by

2(5r3 — 9r% + 15— 3) r—3)(5r2—2r+1)
B N O S
2(r—23)
=12+ DA

ujlp =

uz = (60)

In contrastto the previous harmonic 4-forms, there is no linear relation between the functions
u1, up anduz here. The magnitude @ (4 is given by

96(75% — 350° + 8294 — 9323 + 8852 — 414 + 99)
(r =5 +1)8 '

It integrates to gively /2G4 dr = 189/4.

1G4|? = (61)
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It is interesting to note that for the anti-self-dual harmonic 4-formigngiven by(56),
we can write it in terms of a globally defined potenti@ls) = dB(3). Specifically, we find
that B(3, can be written as

B<3>=—(r—1)2[ RiAR2 A R3+ (RLAJY+ Ry A J?)

1
(r + 1)2 8(r + 3)2
r+5)

3
A+ D132 } (62)

One can see fron35) that this has a vanishing magnitu(iﬁ(gﬂ2 at r=1. On the other
hand, the analogous expressions for the poteBiiglfor the two harmonic 4-formé58)
and (60) which are similarly expressible as functions-afmes the three 3-form structures
in (62), turn out to have a diverging magnituderat 3. In all three cases thedependent
prefactors tend to constants at infinity.

Our results on harmonic forms are summarised in the following proposition.

Proposition 5.1. Themetric Ag of Proposition 3.tas Spin(7) holonomy and admitsan L2
harmonic 4-form, given by (53)and (56), whose duality isoppositeto that of the Cayley form.
The metric Bg of Proposition 3.3as Sin(7) holonomy and admits both an anti-self-dual
L? harmonic 4-form, given by (53) and (58), and a self-dual L2 harmonic 4-form, given by
(53)and (60).
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